

Instructions for Use Fungiplex[®] Candida IVD Real-Time PCR Kit

For identification of *Candida* species directly from whole blood, plasma and serum

For in vitro diagnostic use

CARE products are designed to support our worldwide customers with high-quality consumables, accessories and dedicated kits.

www.bruker.com/care

Document history

Title:	Instructions for Use Fungiplex Candida IVD Real-Time PCR Kit	
Revision:	evision D (June 2020)	
Part number:	1849973	
Document number:	5030306	
First revision:	November 2017	

The following table describes important changes from the previous revision of this document.

Instructions for the use of the Ext / PCR Control. This can be used as an extraction control or a PCR inhibition control.

Contents

Do	ocume	nt history	. 2
1	Intend	ded use / Intended purpose	. 5
2	Produ	act description	. 5
	2.1	Fungiplex Candida IVD Real-Time PCR Kit components	. 7
	2.2	$\label{eq:Function} Function Control Control Compensation Kit components - for use with LightCycler 480 II only \ .$	7
	2.3	Ordering information	. 7
3	Inspe	ction, storage and stability	8
	3.1	Inspection on arrival	. 8
	3.2	Storage temperature	. 8
	3.3	Suitable storage area	. 8
	3.4	Stability	. 8
4	Risk a	and safety information	. 9
	4.1	General precautions	. 9
	4.2	Chemical risks	. 9
	4.3	Biological risks	. 9
	4.4	Limitations of the procedure	10
5	Mater	ials required but not provided	11
	5.1	General equipment	11
	5.2	Real-time PCR instrumentation	.11
6	-	men collection and DNA extraction	13
	6.1	Extraction protocols used throughout validation	
7	-	procedure	
	7.1	Use of Ext / PCR Control as an extraction control	
		1.1 Addition of extraction control to sample	
		1.2 PCR set-up when using Ext / PCR Control as an extraction control	
	7.2	PCR set-up when using Ext / PCR Control as a PCR inhibition control	
8		nal cycler conditions	
	8.1	ABI 7500	
	8.2	Rotor-Gene Q	
	8.3	CFX96	
	8.4	QuantStudio 5	
	8.5	LightCycler 480 II color compensation protocol	
	8.6	LightCycler 480 II PCR protocol	
	8.7	FluoroCycler XT	
•	8.8	Mic qPCR Cycler	
9	-	Pretation of results	
	9.1 0.2	Ext / PCR Control	
	9.2 9.3	Positive and negative controls	
		Unknown / patient samples	
	9.4	FluoroCycler XT results interpretation	34

10 Performance characteristics	36
11 Disposal	
12 Symbols	
13 Manufacturer	

1 Intended use / Intended purpose

The Fungiplex Candida IVD Real-Time PCR Kit (referred to as 'Fungiplex Candida IVD PCR Kit') is a multiplex polymerase chain reaction (PCR) *in vitro* diagnostic (IVD) test for the qualitative detection of *Candida* DNA extracted from whole blood, plasma and serum obtained from human patients considered at risk of invasive fungal disease (IFD). The test is intended for use by qualified laboratory individuals as an aid to the diagnosis of invasive candidiasis, specifically of *Candida* spp., *C. glabrata* and *C. krusei* infections. The results of this test should not be used as the sole basis for diagnosis, treatment or patient management decisions.

2 Product description

Invasive Fungal Disease

Invasive fungal diseases (IFDs) are emerging as an increasingly important cause of life-threatening infections and represent a significant cause of morbidity and mortality in patients who receive immunosuppressive therapies, such as those prescribed for solid organ transplants (SOT) and hematopoietic stem cell transplants (HSCT), and in patients suffering immune compromising conditions such as AIDS.

The incidence of human infections caused by fungal species has increased rapidly over the previous two decades as immunocompromised populations increase as a result of improved treatment pathways. Of these infectious species, *Aspergillus* and *Candida* are the most prevalent, accounting for between 70-90% of all reported invasive fungal disease depending on patient population¹ (see Table 1).

	Invasive aspergillosis	Invasive candidiasis	Other
нѕст	43.0%	28.0%	29.0%
SOT	18.8%	52.9%	28.3%
НМ	33.0-69.0%	13.4 - 44.0%	-
ICU	11.0%	79.0%	10.0%

Table 1 Proportion of reported invasive fungal infections¹

HSCT – hematopoietic stem cell transplants

SOT - solid organ transplants

HM - hematologic malignancy

ICU - intensive care unit

Candida

Candida spp. are opportunistic yeasts and one of the most important groups of fungal pathogens, with *C. albicans*, *C. glabrata*, *C. parapsilosis*, *C. tropicalis* and *C. krusei* accounting for nearly 95% of invasive candidiasis episodes. *Candida* spp. distribution also varies according to geographical setting with *C. albicans* the most prevalent followed by *C. glabrata* and *C. parapsilosis*². Resistance to fluconazole has been associated with an increase in the prevalence of both *C. glabrata* and *C. krusei*, generating a need for species specific identification of both pathogens².

Diagnosis

The diagnosis of invasive fungal disease can be challenging with difficulties in diagnosis initially leading to considerable variation in how cases were defined. Criteria for identification of IFD have been developed by the European Organisation for Research and Treatment of Cancer/Mycoses study group (EORTC/MSG) allowing improved and consistent definition³. Current diagnosis relies upon the presence of risk factors (host characteristics), microbiology, serology (galactomannan and β -D-glucan testing), and various radiological findings^{1,4}.

Interest in PCR based diagnosis of invasive fungal disease has increased owing to its potential to provide improved speed, sensitivity and specificity over existing methods⁴. A meta-analysis of PCR methods, applied to invasive candidiasis detection from whole blood, indicated that the use of PCR could achieve sensitivity and specificity of 95% and 92% respectively⁵.

Fungiplex Candida IVD PCR Kit

The Fungiplex Candida IVD PCR Kit is a multiplex *in vitro* test for the qualitative detection of *Candida* DNA extracted from whole blood, plasma and serum. The assay is designed to be used across common laboratory PCR equipment and can process up to 100 samples from post extraction to result in less than 2 hours. The species detected, and their respective reporting format, are detailed in Table 2. The rapid, reliable detection provided by this test has the potential to aid earlier diagnosis, while quality controlled manufacture ensures that the user can have full confidence in assay quality and reproducibility.

Species dete	cted
C. albican	S
C. parapsilosis	
C. tropical	S
C. dublinien	sis
C. krusei	

Table 2 Fungal pathogens identified using Fungiplex Candida IVD PCR Kit

References

Candida glabrata

- 1. J. Kriengkauykiat, J. I. Ito, S. S. Dawal, Clinical Epidemiology, 2011, 3, 175-191
- M. A. Pfaller, S. A. Messer, L. N. Woosley, R. N. Jones, M. Castanheira, J. Clin. Microbiol., 2013, 51, 2571-2581

C. glabrata

- 3. EORTC/MSG Cooperative group, *Clin. Infect. Dis.*, **2008**, 46, 1813-1821
- 4. R. Barton, Scientifica, 2013, 1-29
- 5. T. Avni, L. Leibovici, M. Paul, J. Clin. Microbiol., 2011, 49, 665-670

2.1 Fungiplex Candida IVD Real-Time PCR Kit components

Reagents are provided in quantities that will allow 100 tests to be performed.

Reagent	Volume per tube	Number of tubes	Cap color	Reactions per tube
PCR Master Mix	1.2 mL	1	Orange	100
Candida Master Mix	120 µL	1	Purple	100
PCR Water	800 µL	1	White	100

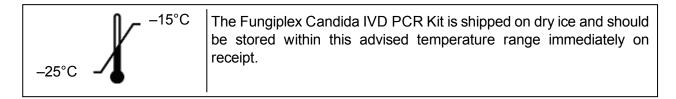
Fungiplex Candida Control Kit

Reagent	Volume per tube	Number of tubes	Cap color
Ext / PCR Control	650 µL	2	Red
Positive Control Candida	60 µL	3	Green
Negative Control	240 µL	3	White

2.2 Fungiplex Candida IVD Colour Compensation Kit components – for use with LightCycler 480 II only

Reagent	Volume per tube	Number of tubes	Cap color
PCR Water	800 µL	1	White
Internal Control	135 µL	1	Red
PCR Master Mix	1.2 mL	1	Orange
Internal Control Master Mix	40 µL	1	Purple
Candida spp. Master Mix	40 µL	1	Purple
Candida glabrata Master Mix	40 µL	1	Purple
Candida krusei Master Mix	40 µL	1	Purple
Candida spp. Plasmid	180 µL	1	Red
Candida glabrata Plasmid	180 µL	1	Red
Candida krusei Plasmid	180 µL	1	Red

2.3 Ordering information


Product	Part number
Fungiplex Candida IVD PCR Kit	1849973
Fungiplex Candida IVD ColourComp Kit	1854027

3 Inspection, storage and stability

3.1 Inspection on arrival

Check the Fungiplex Candida IVD PCR Kit on arrival. If the packaging is damaged the kit must not be used. Additionally, all reagents contained within the Fungiplex Candida IVD PCR Kit are shipped frozen and should arrive frozen. If reagents are not frozen upon receipt or if the tubes have been compromised during shipment, contact Bruker Daltonik GmbH for assistance.

3.2 Storage temperature

3.3 Suitable storage area

The internal reagent box named 'Fungiplex Candida Real-Time PCR Kit' should be stored in an amplicon free laboratory.

The internal reagent box named 'Fungiplex Candida Control Kit', which includes all necessary controls, should be stored in the area of the facility where the **DNA template / sample template is added**. The Fungiplex Candida IVD Colour Compensation Kit should also be stored in this area, if applicable.

3.4 Stability

The Fungiplex Candida IVD PCR Kit has demonstrated that the performance is not affected when used over 10 freeze-thaw cycles.

All reagents contained within the Fungiplex Candida IVD PCR Kit have been validated for use within the expiration date stated on the kit label and must be used within this time period.

4 Risk and safety information

4.1 General precautions

- This Fungiplex Candida IVD PCR Kit is for in vitro diagnostic use.
- This test is only for use with the PCR platforms on which the process has been validated.
- A trained professional should interpret results generated from the Fungiplex Candida IVD PCR Kit in conjunction with other diagnostic tests and clinical presentation.
- Test procedure should be performed as outlined within these Instructions for Use. Any deviation from the outlined protocols may result in assay failure or generate erroneous results.
- This test is for use with DNA extracted from whole blood, plasma and serum.
- Standard precautions and institutional guidelines should be followed when handling all samples.
- Low concentrations of DNA can be unstable if stored for long periods. Bruker advises that sample storage time should be minimized before testing.
- Do not use reagents after their stated expiry date.
- Do not mix reagents from different tubes or kits, even if they are from the same lot.
- Do not substitute reagents from different manufacturers.
- Take care to preserve the purity of kit reagents. Avoid contamination from positive controls and specimens by following good laboratory practice and organizing and segregating workflow appropriately.
- Ensure all additional required consumables are DNase / RNase free.
- Wear protective clothing and disposable gloves when handling kit reagents.
- Do not use kit reagents if the label seal is broken upon receipt.
- Do not eat, drink or smoke in areas where specimens or kit reagents are being handled.
- Dispose of unused reagents and waste in accordance with country, state and local regulations.

4.2 Chemical risks

There are no hazardous substances included in the manufacture of the Fungiplex Candida IVD PCR Kit. The composition of all kit reagents presents no specific risk to the user or to their property.

Additional chemicals and materials may be required for procedures described in these Instructions for Use. Carefully read any warnings, instructions, or Safety Data Sheets provided by the supplier and follow general safety regulations when handling chemicals, biohazards, or other materials.

4.3 Biological risks

The Fungiplex Candida IVD PCR Kit involves working with potentially dangerous and transmissible biological material. Personnel working with these materials are responsible for reading and following all necessary health and safety precautions.

It is very important to wear appropriate personal protective equipment at all times; a lab coat, protective gloves and safety glasses as a minimum.

4.4 Limitations of the procedure

- This assay is a qualitative test and does not provide quantitative data on any detected organism.
- False positive results may arise from external contamination of original sample or contamination during PCR set-up.
- All results generated by this assay should be interpreted by a trained healthcare professional in conjunction with other diagnostic tests and clinical presentation.
- Positive results do not rule out co-infection with additional organisms that are not detected via this test.
- Extraction efficiency may impact results and could result in false negative outcomes.
- Preliminary data indicates that stability of extracted DNA may be affected by freezing and storage. It is therefore recommended that samples are processed as quickly as possible after collection.

5 Materials required but not provided

5.1 General equipment

Equipment

- Recommended nucleic acid extraction platform
- Validated real-time thermal cycler instrument
- Class II hood / PCR station
- Vortex mixer
- Mini centrifuge
- Centrifuge capable of microplate processing (recommended)
- Fridge (2 to 8°C) and freezers (-25°C to -15°C)
- Micropipettes for volumes of 1 to 1000 µL

Reagents

- Extraction reagents
- Negative extraction control (recommended, for example nuclease free water)

Consumables

- Appropriate DNase / RNase free plasticware for PCR preparation
- DNase / RNase free pipette tips
- Disposable gloves, powderless
- PCR plasticware compatible with the thermal cycler of choice

5.2 Real-time PCR instrumentation

The Fungiplex Candida IVD PCR Kit has been validated across multiple real- time PCR instruments. The validated instruments and a list of consumables used throughout verification and validation studies are advised below in Table 3.

Table 3 Real-Time PCR instrumentation specific details

Real-time PCR	Real-time	Real-time PCR	Validated consumables
instrumentation	PCR platform	instrument software	
manufacturer	model	version	
Applied Biosystems	ABI [®] 7500 Fast	2.3	MicroAmp [™] Fast Optical 96- Well Reaction Plates MicroAmp [™] Optical 8-Cap Strips

Real-time PCR instrumentation manufacturer	Real-time PCR platform model	Real-time PCR instrument software version	Validated consumables
		CFX Manager 3.1	MicroAmp™ Fast Optical 96- Well Reaction Plates
			MicroAmp™ Optical 8-Cap Strips
Bio-Rad	CFX96™		Bio-Rad, Hard-Shell [®] 96-Well PCR Plate, low-profile, skirted, white
		CFX Manager IVD Edition 1.6	Bio-Rad, 0.2 ml 8-Tube PCR strips without Caps, low profile, white
			Bio-Rad, Optical Flat 8-Cap Strips
Qiagen	Rotor-Gene Q 5plex HRM	2.3.1	Qiagen Strip Tubes and Caps, 0.1 mL
Roche ¹	LightCycler [®] 480 II	1.5.1	LightCycler [®] 480 Multiwell Plate 96 (white)
Koche			MicroAmp™ Optical 8-Cap Strips
Applied Discusters	QuantStudio™	1.3.1	MicroAmp™ Fast Optical 96- Well Reaction Plates
Applied Biosystems	5	1.3.1	MicroAmp™ Optical 8-Cap Strips
Bio Molecular Systems	Mic qPCR Cycler	2.6.4	Mic tubes and caps supplied by Bio Molecular Systems
	FluoroCycler [®] XT	IVD v 1.0.1.1.1.17	4titude [®] FrameStar 480/90 PCR plates
Hain Lifescience			4titude [®] Clear Weld Seal Mark II seals

¹Roche LightCycler 480 II requires a one-time color compensation as defined in section 8.5 of this instruction

6 Specimen collection and DNA extraction

The sensitivity achieved by real-time PCR assays is inherently linked to the quality of the extracted DNA and therefore samples must be collected and stored appropriately following the guidelines below.

- Samples should be extracted from whole blood, plasma or serum on available extraction platforms following the recommendations for extracting DNA from *Aspergillus fumigatus* published by the European Aspergillus PCR Initiative^{6,7} (EAPCRI).
- Good laboratory practice recommends including at least one positive and negative extraction control per analysis.
- Extracted samples should be stored between -80°C and -20°C for long term storage.
 - **Note** Low concentrations of DNA can be unstable if stored for long periods.

References

- 6. P.L. White, J. Clin. Microbiol., 2010, 3753-3755
- 7. P.L. White, J. Clin. Microbiol., 2011, 3842-3848

6.1 Extraction protocols used throughout validation

The protocols used for the extraction of DNA throughout the validation are referenced in Table 4. Bruker has the ability to recommend these extraction procedures but accepts no responsibility for the performance of any of the stated protocols and advises each user to perform an internal validation on their specific platform / procedure. For extraction from whole blood samples, bead beating steps are recommended.

Extraction platform	Extraction kit used	Extraction input volume	Extraction elution volume	
Qiagen EZ1	EZ1 DSP Virus Kit	400 µL	60 µL	
bioMérieux NucliSENS®Generic 2.0.1 witheasyMag®NucliSENS lysis buffer		500 µL	60 µL	
Hain Lifescience GXT NA Extraction Kit GenoXtract [®] (Bruker) GXT NA Extraction Kit		550 µL	100 µL	

Table 4Extraction protocols

7 Test procedure

The control material (**Ext / PCR Control**) contained within the Fungiplex Candida IVD PCR Kit can be used as either an extraction control or a PCR inhibition control.

ATTENTION

Bruker recommends the use of a clean room (PCR suite) to set up all PCR reactions with addition of template in a suitable area out with the clean room facility. To avoid any risk of contamination, users should follow good laboratory practice at all times and segregate workflow appropriately.

DNase / RNase free plasticware should be used.

If Ext / PCR Control is to be used as an extraction control, proceed to section 7.1. For this procedure, the control material should be added prior to extraction and NOT included in the PCR Master Mix.

If **Ext / PCR Control** is to be used as a **PCR inhibition control**, proceed to section 7.2. For this procedure, the control material should be added to the **PCR Master Mix** after extraction.

7.1 Use of Ext / PCR Control as an extraction control

7.1.1 Addition of extraction control to sample

- Remove the vial Ext / PCR Control (contained within the Fungiplex Candida Control Kit) from the freezer and allow to thaw.
- Add 10 μ L of Ext / PCR Control to each sample prior to extraction.
- Ensure at least one negative sample is included in the extraction run see section 7.1.2.
- Extract the samples following existing internal procedures on a commercial extraction platform following guidelines recommended in section 6.

7.1.2 PCR set-up when using Ext / PCR Control as an extraction control

- Before beginning PCR set-up, the user has the responsibility to assign samples to the appropriate wells within the appropriate plasticware; this information should be recorded for traceability purposes.
- Within an amplicon free area, remove the Fungiplex Candida IVD PCR Kit from the freezer and allow the reagents to thaw.
- Briefly vortex and centrifuge the supplied reagents.
- Prepare a PCR reaction mastermix using the reagents and volumes detailed in Table 5.
- Volumes are given per reaction well and should be multiplied by the number of reaction wells, taking into account the number of samples, positive and negative controls in the analysis. The prepared PCR reaction mastermix should be thoroughly mixed and centrifuged for 10 seconds.

Table 5 Preparation volumes for the PCR reaction mastermix

Assay kit reagents	PCR reaction mastermix
PCR Master Mix	10.0 µL
Candida Master Mix	1.0 µL
PCR Water	4.0 µL
Total volume (per well)	15.0 μL

Example: For 10 reaction wells (8 samples, 1 positive control and 1 negative control), the total volume of the PCR reaction mastermix will be $10 \times 15 = 150 \mu$ L.

- Before dispensing into reaction wells, transfer the PCR reaction mastermix to the template / sample addition area and dispense 15 µL of the PCR reaction mastermix into the relevant tubes / wells of the appropriate plasticware.
- Remove the Fungiplex Candida Control Kit from the freezer and allow the reagents to thaw. Briefly vortex and centrifuge the reagents.
- For each sample, add 5 µL of extracted sample material to the PCR reaction mastermix in the required well (see Table 6).
- For each positive control sample, add 5 μL of Positive Control Candida to the PCR reaction mastermix in the required well. At least one positive control reaction should be included to provide details on reaction efficiency.
 - **Note** The Positive Control Candida should be added directly to the PCR mastermix and should not undergo any extraction procedure.
- For each negative control sample, add 5 µL of negative extracted material to the PCR reaction mastermix in the required well. At least one negative control reaction should be included to provide details on contamination.
 - **Note** This is NOT the Negative Control supplied by Bruker.

Table 6 Dispensed volumes of final PCR reaction mastermix per well

PCR reaction well composition	Final PCR reaction mastermix	
PCR reaction mastermix (from Table 5)	15.0 µL	
Sample / Control material template	5.0 µL	
Final volume (per well)	20.0 µL	

- The plasticware should then be sealed and transferred to a validated thermal cycler for amplification.
 - **Note** Ensure the samples are centrifuged briefly before placing in the thermal cycler.
 - **Note** Please refer to the instrument manual for instructions on setting up an amplification run. Amplification should be carried out according to the instrument-specific parameters detailed in section 8 of this Instructions for Use.

7.2 PCR set-up when using Ext / PCR Control as a PCR inhibition control

- Before beginning PCR set-up, the user has the responsibility to assign samples to the appropriate wells within the appropriate plasticware; this information should be recorded for traceability purposes.
- Within an amplicon free area, remove the Fungiplex Candida IVD PCR Kit from the freezer and allow the reagents to thaw.
- Briefly vortex and centrifuge the supplied reagents.
- Prepare a PCR reaction mastermix using the reagents and volumes detailed in Table 7.
- Volumes are given per reaction well and should be multiplied by the number of reaction wells, taking into account the number of samples, positive and negative controls in the analysis. The prepared PCR reaction mastermix should be thoroughly mixed and centrifuged for 10 seconds.

Table 7 Preparation volumes for the PCR reaction mastermix

Assay kit reagents	PCR reaction mastermix		
PCR Master Mix	10.0 µL		
Candida Master Mix	1.0 µL		
PCR Water	3.0 µL		
Total volume (per well)	14.0 μL		

Example: For 10 reaction wells (8 samples, 1 positive control and 1 negative control), the total volume of the PCR reaction mastermix will be $10 \times 14 = 140 \ \mu$ L.

- Before dispensing into reaction wells, transfer the PCR reaction mastermix to the template / sample addition area for inclusion of the Ext / PCR Control.
- Remove the Fungiplex Candida Control Kit from the freezer and allow the reagents to thaw. Briefly vortex and centrifuge the reagents.
- The Ext / PCR Control material should be added to the bulk PCR reaction mastermix. The Ext / PCR Control is added at 1 μ L per reaction well (see Table 8).

Table 8Preparation volumes for the PCR reaction mastermix with inclusion of Ext /
PCR Control

Mastermix reagents + Ext / PCR Control	PCR reaction mastermix	
PCR reaction mastermix (from Table 7)	14.0 µL	
Ext / PCR Control	1.0 µL	
Total volume (per well)	15.0 μL	

Example: For 10 reaction wells (8 samples, 1 positive control and 1 negative control) $10 \,\mu$ L of the Ext / PCR Control material must be added to the bulk mastermix. For 10 reaction wells this will provide a total PCR reaction mastermix volume of 150 μ L.

- Dispense 15 µL of PCR reaction mastermix prepared in Table 8 into appropriate plasticware.
- For each sample, add 5 µL of extracted sample material to the PCR reaction mastermix (see Table 9).

- For each positive control, add 5 µL of Positive Control Candida to the PCR reaction mastermix. At least one positive control reaction should be included to provide details on reaction efficiency.
- For each negative control, add 5 µL of Negative Control to the PCR reaction mastermix. At least one negative control reaction should be included to provide details on contamination.

 Table 9
 Dispensed volumes of final PCR reaction mastermix per reaction well

PCR reaction well composition	Final PCR reaction mastermix
PCR Reaction mastermix + Ext / PCR Control (from Table 8)	15.0 µL
Sample / Control material template	5.0 µL
Final volume (per well)	20.0 µL

• The plasticware should then be sealed and transferred to a validated thermal cycler for amplification.

- **Note** Ensure the samples are centrifuged briefly before placing in the thermal cycler.
- **Note** Please refer to the instrument manual for instructions on setting up an amplification run. Amplification should be carried out according to the instrument-specific parameters detailed in section 8 of this Instructions for Use.

8 Thermal cycler conditions

8.1 ABI 7500

Refer to the instruction manual for information on how to operate the real-time PCR instrument and perform data analysis.

This instrument collects all dyes as default – see Table 10 for the dyes used with the Fungiplex Candida IVD PCR Kit.

Table 10	Detector channels used on the ABI 7500 instrument
----------	---

	GREEN	YELLOW	ORANGE	RED
Reporter Dye Channel	FAM	JOE	ROX	Cy5
Quencher	None	None	None	None
Target detected	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata

Configure the ABI 7500 with the following settings:

- Instrument type: 7500 Fast (96 wells)
- Experiment type: Quantitation Standard Curve
- Reagents used: TaqMan® Reagents
- Ramp speed: Standard or Fast
 - The ABI 7500 can be used in either **Standard** or **Fast** mode. Approximate run time of **Standard** mode is 1 hour 15 minutes and approximate run time of **Fast** mode is 1 hour.
- Reaction volume: 20 µL
- Passive reference dye: None

See Table 11 for the thermal profile settings. Data should be collected for all 45 cycles.

Table 11	PCR parameters for the Fungiplex Candida IVD PCR Kit
----------	--

Step	Temperature (°C)	Time	Number of cycles	Data collection
Activation	95	15 minutes	1	Off
Denaturation	95	5 seconds	45	Off
Annealing / extension	60	30 seconds		On

To analyze the data, ensure the **Passive reference dye** is set to **None** and in **Options** deselect the box for **Auto threshold** for each target. The **Baseline** should continue to be calculated **Automatically**.

Use the information in Table 12 to set the **Threshold** for each detector channel in the **Analysis settings** window.

Table 12	ABI 7500 threshold values for the Fungiplex Candida IVD PCR Kit	
----------	---	--

Channel	FAM	JOE	ROX	Cy5
Target(s)	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata
Threshold	5000	4000	7000	5000

8.2 Rotor-Gene Q

Refer to the instruction manual for information on how to operate the real-time PCR instrument and perform data analysis.

Select the appropriate fluorophore within in each channel and assign to the relevant target, as shown in Table 13.

Table 13 Detector channels used on the Rotor-Gene Q instrument

Reporter Dye Channel	GREEN	YELLOW	ORANGE	RED
Target detected	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata

Configure the Rotor-Gene Q Series software with the following settings:

- Select 72-well rotor
- Reaction volume: 20 µL
- Auto Gain should be used for the selected dye channels only. Set to implement before first acquisition on the default well.

See Table 14 for the thermal profile settings. Data should be collected for all 45 cycles.

Table 14 PCR parameters for the Fungiplex Candida IVD PCR Kit

Step	Temperature (°C)	Time	Number of cycles	Data collection
Activation	95	15 minutes	1	Off
Denaturation	95	5 seconds	45	Off
Annealing / extension	60	30 seconds		On

To analyze data apply the following settings:

- Normalization: select Dynamic Tube and Slope Correct.
- Analyze all cycles and enter the **Threshold** and **Outlier removal** values for each channel as detailed in Table 15.

Table 15 Rotor-Gene Q threshold values for the Fungiplex Candida IVD PCR Kit

Channel	GREEN	YELLOW	ORANGE	RED
Target(s)	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata
Threshold	0.03	0.06	0.06	0.03
Outlier removal	3%	2%	3%	5%

8.3 CFX96

Refer to the instruction manual for information on how to operate the real-time PCR instrument and perform data analysis.

This instrument collects all dyes as default – see Table 16 for the dyes used with the Fungiplex Candida IVD PCR Kit.

Table 16 Detector channels used on the CFX96 instrument

	GREEN	YELLOW	ORANGE	RED
Reporter Dye Channel	FAM	VIC	ROX	Cy5
Target detected	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata

Configure the CFX96 with the following settings:

- Sample volume: 20 μL
- Scan Mode: All channels
- Plate Type: BR Clear / BR White (dependent on plasticware used)

See Table 17 for the thermal profile settings. Data should be collected for all 45 cycles.

Table 17 PCR parameters for the Fungiplex Candida IVD PCR Kit

Step	Temperature (°C)	Time	Number of cycles	Data collection
Activation	95	15 minutes	1	Off
Denaturation	95	5 seconds	45	Off
Annealing / extension	60	30 seconds		On

To analyze the data, under **Baseline Setting** select the following:

- Baseline Subtracted Curve fit
- Apply fluorescent drift correction (not applicable when using the IVD software)

To set the threshold values for each detector channel navigate to **Settings > Baseline threshold > Single threshold > User defined** and enter the values from Table 18. **Baseline** should remain **Autocalculated**.

Table 18 CFX96 threshold values for the Fungiplex Candida IVD PCR Kit

Channel	FAM	VIC	ROX	Cy5
Target(s)	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata
Threshold (Manager 3.1 software)	30	40	30	30
Threshold (IVD 1.6 software)	50	150	50	50

8.4 QuantStudio 5

Refer to the instruction manual for information on how to operate the real-time PCR instrument and perform data analysis.

This instrument collects all dyes as default – see Table 19 for the dyes used with the Fungiplex Candida IVD PCR Kit.

Table 19 Detector channels used on the QuantStudio 5 instrume

	GREEN	YELLOW	ORANGE	RED
Reporter Dye Channel	FAM	VIC	ROX	Cy5
Quencher	None	None	None	None
Target detected	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata

Configure the QuantStudio 5 with the following settings:

- Sample volume: 20 µL
- Standard mode (with ramp rates of 1.6°C/second) or Fast mode
 - The QuantStudio 5 can be used in either **Standard** mode or **Fast** mode. Approximate run time of **Standard** mode is 1 hour 15 minutes and approximate run time of **Fast** mode is 1 hour.

See Table 20 for the thermal profile settings. Data should be collected for all 45 cycles.

Table 20	PCR parameters for the Fungiplex Candida IVD PCR Kit
----------	--

Step	Temperature (°C)	Time	Number of cycles	Data collection
Activation	95	15 minutes	1	Off
Denaturation	95	5 seconds	45	Off
Annealing / extension	60	30 seconds		On

To analyze the data, ensure the **Passive reference dye** is switched to **None** and in **Options** deselect the box for **Auto threshold** for each target. The **Baseline** should continue to be calculated **Automatically**.

Use the information in Table 21 to set the threshold values for each detector channel in the **Analysis** settings window.

Table 21QuantStudio 5 threshold values for the Fungiplex Candida IVD PCR Kit

Channel	FAM	VIC	ROX	Cy5
Target(s)	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata
Threshold	6500	4500	6000	6000

8.5 LightCycler 480 II color compensation protocol

On request, the Fungiplex Candida IVD PCR Kit is supplied with a Fungiplex Candida IVD Colour Compensation Kit for use with the LightCycler 480 II. If you have not received the color compensation kit or if you want to repeat this procedure, please contact care@bruker.com.

Note Follow the instructions in this section to create a color compensation file before running any samples with the Fungiplex Candida IVD PCR Kit.

Remove the Fungiplex Candida IVD Colour Compensation Kit from the freezer and allow to thaw. Thoroughly vortex the tubes once defrosted.

Five separate mastermixes must be prepared by combining each of the reagents individually labelled and detailed in Table 22 to Table 26. For each of the mastermixes, use the corresponding primer / probe aliquots and plasmid aliquots.

Table 22Individual mastermix preparation for color compensation – Candida spp.
(Yakima Yellow)

Color compensation mastermix components – <i>Candida</i> spp.		
Candida spp. Master Mix	7 µL	
PCR Master Mix	70 µL	
PCR Water	28 µL	
Candida spp. Plasmid	35 µL	
Total volume	140 µL	

Table 23 Individual mastermix preparation for color compensation – C. krusei (ROX)

Color compensation mastermix components – <i>C. krusei</i>	
Candida krusei Master Mix	7 µL
PCR Master Mix	70 µL
PCR Water	28 µL
Candida krusei Plasmid	35 µL
Total volume	140 µL

Table 24 Individual mastermix preparation for color compensation – C. glabrata (Cy5)

Color compensation mastermix components – <i>C. glabrata</i>	
Candida glabrata Master Mix	7 µL
PCR Master Mix	70 µL
PCR Water	28 µL
Candida glabrata Plasmid	35 µL
Total volume	140 µL

Table 25Individual mastermix preparation for color compensation – Internal Control
(FAM)

Color compensation mastermix components – Internal Control	Volume
Internal Control Master Mix	7 µL
PCR Master Mix	70 µL
PCR Water	56 µL
Internal Control	7 µL
Total volume	140 µL

Table 26 Individual mastermix preparation for color compensation – Blank (Water)

Color compensation mastermix components – Blank	Volume
PCR Master Mix	70 µL
PCR Water	70 µL
Total volume	140 µL

After preparation of the five individual mastermixes, vortex to ensure sufficient mixing and centrifuge.

Dispense 20 μ L of each mastermix into 6 wells of appropriate plasticware. This will give a total of 30 samples to be analyzed. Seal the samples and transfer to the LightCycler 480 II.

Configure the LightCycler 480 II with the following settings:

- Set up detection format to run the Fungiplex Candida IVD PCR Kit by navigating to Settings > Set detection format and name new file (suggested file name: Fungiplex Candida Assay)
 - Tick 465 510 and label 'FAM'
 - Tick 533 580 and label 'Yakima Yellow'
 - Tick 533 610 and label 'ROX'
 - Tick 618 660 and label 'Cy5'
 - All dyes should be set up to have a **Melt Factor** of **1**, a **Quant Factor** of **10** and a **Maximum Integration Time** of **2** seconds
 - Save the detection format.
- Reaction volume: 20 µL

Following the instruction manual, set up the thermal profile detailed in Table 27, ensuring the detection format created above is selected from the drop down menu and a volume of 20 μ L is displayed. The analysis should take approximately 1 hour 40 minutes.

Step	Temperature (°C)	Time	Number of cycles	Analysis mode	Data collection
Pre-incubation	95	15 minutes	1	None	None
Denaturation	95	5 seconds			None
Annealing / extension	60	30 seconds	45	Quantification	Acquire
	95	30 seconds	1	Color	None
Temperature gradient	40	30 seconds			None
	80	5 acquisitions per °C		compensation	Continuous
Hold	40	10 seconds	1	None	None

Table 27 Color compensation thermal profile on LightCycler 480 II

Once completed, save the file to an appropriate location – if the analysis is not being done immediately then it can be imported at a later date.

In the opened file, select the **Subset Editor** tab, click **+** and highlight all the wells in use, name (suggested subset name: *Fungiplex Candida*) and click **Apply**.

Go to sample editor:

- Ensure Color Comp is selected in Step 1: Select Workflow.
- In Step 2: Select Samples, highlight all replicate wells from each individually prepared mastermix.
- In Step 3: Edit Color Comp Properties, assign each mastermix to its target name. These are provided in Table 28. Click Make Replicates.

Go to the Analysis tab and select Color compensation.

Under the Subset drop down menu select the file name previously entered. Click Calculate.

Click **Save** and store in an appropriate location. Then click on **Save CC** object at the bottom right of the screen, select the **Special Data** folder > select the **CCC** folder and name appropriately (suggested object name: *CC Fungiplex Candida*).

Table 28Dominant channels associated with Candida targets for creation of color
compensation files

Sample name	Dominant channel
Internal Control	FAM
Candida spp.	Yakima Yellow
C. krusei	ROX
C. glabrata	Cy5
Blank	Water

8.6 LightCycler 480 II PCR protocol

Refer to the instruction manual for information on how to operate the real-time PCR instrument and perform data analysis.

Table 29 details the targets detected by the corresponding filter combinations. Set these dyes as the reporter dyes.

	GREEN	YELLOW	ORANGE	RED
Reporter Dye Channel	FAM	Yakima Yellow	ROX	Cy5
Filter Comb	465 - 510	533 - 580	533 - 610	618 - 660
Target detected	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata

Table 29Detector channels used on the LightCycler 480 II instrument

Use the detection format set up in section 8.5 (suggested file name: *Fungiplex Candida Assay*) and use the LightCycler 480 II with the following settings:

• Reaction volume: 20 µL

See Table 30 for the thermal profile settings. Data should be collected for all 45 cycles.

Table 30PCR parameters for the Fungiplex Candida IVD PCR Kit

Step	Temperature (°C)	Time	Number of cycles	Data collection
Activation	95	15 minutes	1	None
Denaturation	95	5 seconds	45	None
Annealing / extension	60	30 seconds		Acquire

Analyze data with **Absolute quantification / second derivative max**. Data is analyzed using the color compensation file prepared in section 8.5 – see Table 31.

Table 31	LightCycler 480 II th	reshold values for the Fungiplex Candida IVD PCR Kit
----------	-----------------------	--

Channel	FAM	Yakima Yellow	ROX	Cy5
Target(s)	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata
Threshold	2nd derivative auto- calculated	2nd derivative auto- calculated	2nd derivative auto- calculated	2nd derivative auto- calculated

8.7 FluoroCycler XT

The FluoroCycler XT has a bespoke software module for running the Fungiplex Candida IVD PCR Kit. The thermal profile, channel selection, data analysis and result interpretation are performed automatically. A report is generated where a result for all wells is displayed.

The manufacturer's instruction manual offers a comprehensive overview of the instrument but a brief summary for running the Fungiplex Candida IVD PCR Kit is detailed below.

Prior to running on this system, the PCR plate must be sealed with Clear Weld Seal Mark II seals using a 4titude Semi-Automatic Sheet Heat Sealer (model - 4s3[™]).

A barcode is included in the Fungiplex Candida IVD PCR Kit. This is required to register a lot number within the Hain FluoroCycler XT software. This will be required for every new batch of the kit used on the instrument.

Click the wrench button in the main window and select **Register new batch** from the **FluoroType Assays** tab. A new window opens (see Figure 1).

Register a new batch (FluoroType Assays)	×
Scan Barcode Manually	
Scan barcode on barcode label	
or enter the information manually in 'Manually' tab	
OK Cancel	

Figure 1 Registering a new kit lot number using a barcode scanner

Insert the new kit lot number using the barcode scanner.

When the kit lot has been registered successfully, the message **The Lot No is ready to use** appears. In order to run a plate, select **Click here to start run** on the instrument home page (see Figure 2).

Figure 2 Instrument home page

When prompted, enter the plate barcode (found on the side of the PCR plate with the format FCxxxxxx) and click **Next** (see Figure 3).

• Sur FCR IN Quick Data I	mport		×
Scan Plate ID			
Import LIMS file		-	
Import Sample Sheet		-	
GenoXtract 96 data			
III 1			

Figure 3 Quick Data Import page

Select FP Candida from the Choose FluoroType Assay page; then click Next (see Figure 4).

FP Candida x	Clear all AssayArea	
Search for Assay		
Bacteria	Fungi	
Carbaplex 1 Carbaplex 2 MTBDR 2.0 - Clinical Specimen MTBDR 2.0 - Cultivated Sample	FP Asperaillus FP Asperaillus Azole-R FP Candida	

Figure 4 Choose FluoroType Assay page

The run can be started immediately by selecting the **Start Run first** option; otherwise, select **Enter Sample Data first** (see Figure 5).

Note The sample information must be entered before the run is finished. Otherwise, the data will be deleted and no results will be displayed.

Start PCR run	- 0 X
Choose Run Option	₽
 Start Run first 	
O Enter Sample Data first	
	BACK NEXT

Figure 5 Choose Run Option page

Follow the wizard to open the **Sample Editor** page (see Figure 6).

No. 148 View	Deta Table		
	O coly televised O risks trepty tample		
	Ann (Col. Johnson	The long boths	Caller Josefs
Conversion Tables of	A 71	* URDOWS	
Sample Editor	A 2	# Linkson	
	1	* Universit	
Enter or load Sample Data		# Unicous	
	4	* UNIX.WE	
	4 77	* UNIXON	
The second se	A 78	* UNRIGHT	
Experiment name: UNIXUE-IUVALIEND	A . * 9	* Uthours	
Comment (optional):	A 10 A 11	* Listensen	
	A 10	A Linkson	
Plate ID: ACTING	A 7.5	* UROUR	
	8 *2	* URDOWS	
		* URDOWS	
		* UNROUND	
Data Gild	8 7.5	* University	
	8 74	* Unincere	
	a #2	* Uninces	
	0 1	* UNROWE	
	1.11	* UROWS	
	8 11	* Likikowi	
	8 10	* Universit	
	C * 1	* Universit	
	c * 1	* Unicourt	
	0	* Unicourt	
	0 4	* UNIXON	
	c * s	* URDOWN	1
	0 * 6	* UNROWS	
	C 77	* University	
		# Lainces	
	0 10	# Literare	
	0 * 11	* UNIXER	
III) îv 🗇 🖓 🛡	1		

Figure 6 Sample Editor page (no special characters can be used here)

Label all samples as either **Unknown**, **Positive** or **Negative** by selecting on the appropriate wells; right click to edit the samples. Ensure **Name**, **Assay Type** and **Lot No** fields are populated as per Figure 7.

Note Only one (1) replicate of positive control and negative control per plate is permitted. These controls must be the PCR controls prepared during sample set-up (see section 7). If using the Ext / PCR Control as an extraction control, the negative sample assigned here must be an extracted negative.

🟮 Edit 1 Samples		×
Name :	Col -	
Type :	Unknown -	
Assay :	FP Candida 👻	
Lot No :	MLC99990 (2022-12-12) *	
Color :	Edit Color	
Note :		
	OK Cancel	

Figure 7 Edit sample window (sample names must be greater than 2 character long)

Complete the wizard set-up, load the plate and start the run – ensure the **Pre-incubation** step is unselected (see Figure 8).



Figure 8 Start Cycler page

Once completed, a PDF report is automatically generated detailing the results for all wells.

8.8 Mic qPCR Cycler

Refer to the manufacturer's instruction manual for information on how to operate the real-time PCR instrument and perform data analysis.

Select the appropriate fluorophore within each channel and assign to the relevant target, as shown in Table 32.

Table 32 Detector channels used on the Mic qPCR Cycler instrument

	GREEN	YELLOW	ORANGE	RED
Reporter Dye Channel (5' Modifier)	FAM	VIC	ROX	Cy5
Target detected	Ext / PCR Control	<i>Candida</i> spp.	C. krusei	C. glabrata

Configure the Mic qPCR Cycler with the following settings:

- Temperature Control: Standard TAQ (v3)
- Volume: 20 µL
- Set to acquire on: Green, Yellow, Orange and Red channels
- Auto-gain for each channel set to 10, collecting on all tubes

See Table 33 for the thermal profile settings, data should be collected for all 45 cycles.

Table 33PCR parameters for the Fungiplex Candida IVD PCR Kit

Step	Temperature (°C)	Time	Number of cycles	Data collection
Activation	95	15 minutes	1	Off
Denaturation	95	5 seconds	45	Off
Annealing / extension	60	30 seconds		On

To analyze the data, apply the following settings to all channels:

- Exclusion: Extensive
- Method: Dynamic
- Ignore cycles before: 5
- Threshold Start: 1.00
- Apply the **Threshold Level** and **Fluorescence Cutoff Level** to each channel as shown in Table 34.

Table 34 Mic qPCR Cycler threshold values for the Fungiplex Candida IVD PCR Kit

Channel	GREEN	YELLOW	ORANGE	RED
Target(s)	Ext / PCR Control	Candida spp.	C. krusei	C. glabrata
Threshold Level	0.400	0.500	0.400	0.600
Fluorescence Cutoff Level	1%	8%	1%	2%

9 Interpretation of results

9.1 Ext / PCR Control

Detection of the Ext / PCR Control is not required with a positive result. In instances where the Ext / PCR Control is negative but the sample has been reported as positive for one or more *Candida* species, the positive result should be considered valid.

When using the Ext / PCR Control as a PCR inhibition control

In instances where the sample is reported as negative for all targets and the Ext / PCR Control is also negative, the user should repeat the assay using the same extracts. If the Ext / PCR Control is then reported as positive, it is likely that the original result was due to a handling error / PCR inhibition and any new results should be reported. If the Ext / PCR Control is still reported as negative, the sample should be re-tested, starting from the extraction step.

When using the Ext / PCR Control as an extraction control

If the Ext / PCR Control is reported as negative, the sample should be re-tested, starting from the extraction step.

9.2 **Positive and negative controls**

At least one positive and negative control should be included in each analysis. Each negative or positive control should be prepared and tested in the same manner as patient samples.

A negative control that yields a positive test result is indicative of a sample handling or contamination problem. The assay run should be repeated using a fresh aliquot of negative control material, ensuring that the work area and equipment are properly decontaminated and extreme care is taken during PCR set-up.

A positive control that yields a negative result is indicative of reagent failure or sample handling error. Ensure all reagents have been stored correctly and, where applicable, are within expiry date before repeating the assay run taking extreme care during PCR set-up. Expected results for the positive control are provided in Table 35.

Table 35 Expected positive control results

	Expected positive targets
Positive Control Candida	Candida spp. POSITIVE + C. krusei POSITIVE + C. glabrata POSITIVE

9.3 Unknown / patient samples

Always visually inspect the amplification plots for each sample to ensure that the results recorded are due to true amplification and cannot be attributed to background noise recorded above the defined thresholds. When using the LightCycler 480 II, in some exceptional circumstances, color compensation may not completely remove cross talk.

Samples tested by the Fungiplex Candida IVD PCR Kit may have significantly varied loads of material present and much of this may be very close to the limit of detection of the biomarker, therefore any C_t value less than 45 for the corresponding *Candida* species may indicate a positive sample. Table 36 summarises the results possible with the Fungiplex Candida IVD PCR Kit.

Channel	Reported target	C _t value	Result interpretation
GREEN	Ext / PCR Control	>10	Ext / PCR Control PASS
GREEN	EXI/PCR CONTO	N/A or <10	Ext / PCR Control FAIL
YELLOW	Candida ann	<45	Positive sample
TELLOW	Candida spp.	N/A	Negative sample
ORANGE	C. krusei	<45	Positive sample
ORANGE	C. Kruser	N/A	Negative sample
RED	C. alabrata	<45	Positive sample
KEU	C. glabrata	N/A	Negative sample

 Table 36
 Results achieved with Fungiplex Candida IVD PCR Kit

9.4 FluoroCycler XT results interpretation

Sections 9 to 9.3 are also applicable to the FluoroCycler XT, however the automatic result processing and PDF report generation mean further definitions are required, as detailed below.

The top of the report will state the negative and positive control result, for example, **1 valid** or **1 invalid**. Table 37 summarizes the numerous possible results with accompanying definitions.

 Table 37
 Definitions for FluoroCycler XT reports

Result	Explanation		
Candida spp.: positive (CP=xx.x)			
Candida krusei: negative	Candida spp. DNA was detected in the sample at stated CP.		
Candida glabrata: negative			
Candida spp.: negative			
Candida krusei: positive (CP=xx.x)	Candida krusei DNA was detected in the sample at stated CP.		
Candida glabrata: negative			
Candida spp.: negative			
Candida krusei: negative	Candida glabrata DNA was detected in the sample at the stated		
Candida glabrata: positive (CP=xx.x)			
Candida spp.: negative			
Candida krusei: negative	No target DNA detected in the sample.		
Candida glabrata: negative	1		

Result	Explanation
Candida spp.: Invalid	The CP value of Candida spp. is not within the validated range.
Candida krusei: Invalid	The CP value of Candida krusei is not within the validated range.
Candida glabrata: Invalid	The CP value of <i>Candida glabrata</i> is not within the validated range.
Invalid: Internal Control Inhibited	Sample was negative for the presence of target DNA and the Ext / PCR Control was detected with a CP value which indicates inhibition.
Invalid: Internal Control out of range	Sample was negative for the presence of target DNA and the Ext / PCR Control was not detected within the validated CP range.
FP Candida Negative Control: 1 valid	Only the Ext / PCR Control was detected in the negative control.
FP Candida Positive Control: 1 valid	<i>Candida</i> spp., <i>Candida krusei</i> and <i>Candida glabrata</i> were detected in the positive control.
FP Candida Negative Control: 1 invalid	No Ext / PCR Control was detected in the negative control and / or contamination was detected in the negative control.
FP Candida Positive Control: 1 invalid	No Candida spp., Candida krusei and / or Candida glabrata were detected in the positive control.

10 Performance characteristics

The performance characteristics identified from validation of the Fungiplex Candida IVD PCR Kit are highlighted in Table 38 and Table 39. Table 38 provides the analytical performance with known quantities of material analyzed at the limit of detection (LOD) of 30 input copies and above (DNA), while Table 39 presents the clinical performance data from a performance evaluation in a clinical setting.

Table 38 Analytical performance characteristics of the Fungiplex Candida IVD PCR Kit

	Sensitivity (%)	Specificity (%)
Simulated samples	99.6	100

Table 39 Clinical performance characteristics of the Fungiplex Candida IVD PCR Kit

Sample type		Single result	Duplicate result
Simulated corum complex	Sensitivity (%) 99.3 96.7	96.7	
Simulated serum samples	Specificity (%)	99.7	100
Simulated placma complex	Sensitivity (%)	100	100
Simulated plasma samples	Specificity (%)	100	100
	Sensitivity (%)	100	98.3
Simulated whole blood samples	Specificity (%)	99.3	100
Potrospostivo clinical samplos	Sensitivity (%)	83.3	83.3
Retrospective clinical samples	Specificity (%)	96.4	98.2

Figures for clinical performance are based on:

- Simulated serum samples spiked with Candida DNA and analyzed over a concentration range of 5 – 50 CFU/0.5mL for C. albicans, C. parapsilosis, C. dubliniensis, C. tropicalis, C. krusei and C. glabrata
- Simulated plasma and whole blood samples spiked with *Candida* blastospores and analyzed over a concentration range of 10 50 CFU/0.5mL for *C. albicans, C. parapsilosis, C. dubliniensis, C. tropicalis, C. krusei and C. glabrata*
- Retrospective testing was conducted on 100 samples obtained from 23 patients categorized as Proven IC (13), or 'no evidence of fungal disease' (10) according to EORTC criteria

11 Disposal

General disposal

Dispose of any unused reagents, waste and shipping materials in accordance with country, state and local regulations.

Dry ice disposal

Dry ice contains CO_2 and must be handled with gloves in a well ventilated area. Dispose of any dry ice in accordance with country, state and local regulations.

Packaging disposal

Please dispose of all packaging in accordance with local recycling regulations.

The above instructions for disposal apply to EU member states. Correct disposal of this product will help conserve natural resources and ensure that it is recycled in a manner that prevents potential negative consequences for the environment and human health. For more information, please contact your local waste disposal service.

12 Symbols

The following symbols are used in the labeling:

REF	Catalogue number
CE	CE marking
IVD	In vitro diagnostic medical device
	Manufacturer
	Temperature limit
LOT	Batch code
	Use-by date
Σ	Contains sufficient for <n> tests</n>
	Software version number
\checkmark	Unique product identifier
i	Consult instructions for use

13 Manufacturer

Bruker Daltonik GmbH

Fahrenheitstraße 4 28359 Bremen Germany

Support

E-mail: Support.Molecular-Testing@bruker.com Phone: +49 421 2205-4600

Sales Information

E-mail:	For general information please contact: ms.sales.bdal@bruker.com
	For ordering information please contact: care@bruker.com
Phone:	+49 421 2205-0
Web:	www.bruker.com/care

For Australian custom	ners:				
Bruker Pty. Ltd.					
1/28a Albert Street	Support	Support (hardware and software)		Sales	
Preston	Email:	biotyper.anz@bruker.com	Email:	sales.anz@bruker.com	
Victoria 3072	Phone:	+61 (1800) 171-247	Phone:	+61 (1800) 278-537	
Australia			Fax:	+61 (03) 9474-7070	

Descriptions and specifications supersede all previous information.

© Copyright 2020 Bruker Daltonik GmbH